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Glycan Fingerprints: Calculating Diversity in Glycan Libraries
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ABSTRACT: Carbohydrate libraries printed in glycan micorarray
format have had a great impact on the high-throughput analysis of
the specificity of a wide range of mammalian, plant, and bacterial
lectins. Chemical and chemo-enzymatic synthesis allows the
construction of diverse glycan libraries but requires substantial
effort and resources. To leverage the synthetic effort, the ideal
library would be a minimal subset of all structures that provides
optimal diversity. Therefore, a measure of library diversity is
needed. To this end, we developed a linear representation of
glycans using standard chemoinformatic tools. This representation
was applied to measure pairwise similarity and consequently
diversity of glycan libraries in a single value. The diversities of four
existing sialoside glycan arrays were compared. More diverse arrays
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are proposed reducing the number of glycans. This algorithm can be applied to diverse aspects of library design from target
structure selection to the choice of building blocks for their synthesis.

lycosylation is the most abundant post-translational

modification of proteins and displays a much higher
diversity than any other class of biopolymers.' ™ Glycosylation
and its information content underlies many biochemical and
cell biological fundamentals important for life.* For instance,
many glycan binding proteins regulate signaling pathways,
thereby resembling glycans as a major component of the
communication system. However, the storage capacity of
information involved in communication has still to be
deciphered. Recent efforts in the design of glycan arrays to
elucidate the carbohydrate specificity of many lectins have
advanced our understanding significantly.® Still the rational
design of glycan libraries is currently driven by intuition and
manual inspection of carbohydrate databases to choose a
diverse subset of glycans, rather than an objective measure, and
the outcome may be ambiguous.

Diversity lies in the heart of the rational design of chemical
libraries, and the need to cover a broad chemical space has
driven many theoretical research efforts since the early 1980s.%”
With the advent of automated chemical synthesis, chemo-
enzymatic synthesis, and community efforts to establish large
collections of glycan structures, carbohydrate chemistry groups
are faced with questions similar to those the combinatorial
screening community was asking more than a decade ago: What
is the diversity of a given selection of compounds? Which
structures are to be selected for diversification allowing only a
limited number of building blocks or precursors?

The most basic question toward maximizing diversity is how
similar are two molecules? While diversity is a description of a
group of molecules, similarity is a measure of two members.
The pairwise similarity of molecules can be used to measure
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diversity of a set® and is therefore essential for library
diversification.” For a limited set of glycans, one may visually
judge similarity, but this demands expert knowledge and is not
manageable for a large number of structures. The definition of a
clear concept of similarity and consequently the ability to
compare molecules more objectively is fundamental.'’

Determining molecular similarity has two major compo-
nents: a descriptor that translates the molecular structure into a
machine-readable format and a similarity coefficient that
quantifies the level of similarity between pairs of molecules.
Thousands of different descriptors have been developed since
the 1980s, ranging but not limited to 2D descriptors such as
molecular graphs and fingerprints to 3D descriptors. Despite
the fact that 3D descriptors have intuitively superior
information content, they often perform less well than 2D
descriptions and are computationally more demanding.”"!
Structural fingerprints such as Daylight fingerprints represent a
simplified, linear representation of molecules.'” These finger-
prints are sequences of bits (“1”s and “0”s) representing the
presence of connectivity pathways in a molecule. Using these
so-called bit strings has proven to be very effective establishing
a relationship between molecules and their biological proper-
ties."?

In the field of biomolecules, methods have been developed
that are based on the linear structure of nucleic acids and
peptides. In contrast, the analysis of the third major
biopolymer, glycans, is much more complex as these structures
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Figure 1. Principle of glycan fingerprints. (a) Complex glycan structures are presented in CFG annotation with simple representations of
monosaccharides and glycosidic bonds. Three example glycans are depicted (1—3). (b) All unique fragments of a glycan are determined up to given
path length (here: heptasaccharides) and encoded into a linear bit string using “1” for the presence of a fragment. Example fragments are shown
along with a short representation of the corresponding bit string. The full glycan fingerprint given below has black areas for 1s and white areas for Os.
A pairwise comparison of the bit strings between 1—3 reflects their respective similarities given as a value between 0 and 1, with 1 being identical.

are branched. Previous approaches calculating the structural
similarity of glycans have adopted methods from protein and
nucleic acid analysis employing scoring matrices'* or pattern
extraction and kernel methods'® or use shared disaccharide
fragments as a descriptor to calculate similarity.'®

Chemoinformatics solutions have inspired us to develop an
orthogonal approach to this complex biological problem. The
major abstraction in this approach is the treatment of complex
glycan structures similar to small molecules. Monosaccharide
units replace atoms, and glycosidic bonds substitute conven-
tional chemical bond representations. Glycans are therefore
treated as degenerate chemical graphs lacking circular
assemblies of monosaccharide units. In this analogy, it is
important to note that glycans exceed the diversity of small
molecules of comparable size. Glycosidic bonds are more
diverse than annotations of single, double, or triple bonds, and
a larger alphabet of monosaccharides is found in glycans, which
surpasses the average number of atom types found in small
molecules' (Supplementary Figure 1).

We chose structural fingerprints of glycans as a way to
transform a glycan structure into a linear representation, so-
called “glycan fingerprints”. To exemplify the principle of the
method, three glycans were selected representing structures
that are found on glycolipids (1) and N-glycans (2, 3) (Figure
1). Each glycan can be represented by a bit string encoding for
the presence of all of its fragments, eg, up to the size of a
heptasaccharide. Herein, a fragment is defined as a subtree of n
monosaccharides connected by n — 1 glycosidic bonds and is
stored only once per occurrence. Heptasaccharide fragments
were chosen as the upper limit of the path length in analogy to
Daylight fingerprints, with path length being the number of
monosaccharide connected in a fragment'” (Supplementary
Figure 1).

If a certain pattern is found in a glycan, a pseudorandom bit
in the fingerprint is set to 1. In the example glycans (1—3), the
monosaccharide N-acetyl neuraminic acid (NeuSAc) is found
in all glycans, while the disaccharide NeuSAca(2—6)GalNAc is
only found in the ganglioside (1). The resulting sequences of 1s
and Os can then be used to measure the similarity between two
glycan fingerprints using a similarity coefficients. Because of the
known dependency of many similarity coefficients on the
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relative size of the query and the comparison molecule, the
modified Tanimoto (Syy) coefficient has been proven to be a
reliable measure and was chosen throughout this study. The
Tanimoto coefficient is defined as the number of fragments
present in both glycans divided by the sum of unique fragments
of both. Its modification includes contribution of unset bits and
thereby reduces the size bias.'”"®

During the process of encoding the glycan into a sequence of
bits, it is important to properly select the size of the sequence
for sufficient information storage. If not set carefully, glycans
become either too similar (false positives) because the bit string
is filled with 1s or become artificially dissimilar (false negatives)
because the number of 1s is low compared to blank bits."> We
then empirically tested various conditions changing the initial
bit string length and the number of times the string is folded
using a selected test set of 8413 glycans from the KEGG
database, a depository focused on mammalian carbohydrates."
With increasing size of a glycan there is an increase in the
number of fragments that needs to be encoded. For instance,
most tetrasacchrides can be deconvoluted into 10 unique
fragments ranging from mono- to the parent tetrasaccharide.
Up to 60 unique fragments can be found in octasaccharides
(Figure 2a). Therefore, we were concerned whether the
descriptor was able to cover larger structures without exceeding
its storage capacity. The bit string density, being the fraction of
Is in the sequence, is a valid measure to assess if the encoding is
still suitable for the analysis. Theoretical considerations suggest
that bit strings can have a density up to 0.2—0.4 without losing
specificity.'> Hence, we varied the length and folding
empirically and chose bit strings of a length of 1024 bits that
are folded once to fulfill these demands (Figure 2b and
Supplementary Figure 2a,b). When not applied to the analysis
of the KEGG glycans the settings were adjusted according to
the demands of the structures analyzed (Supplementary Figure
2¢,d).

As a first validation, we used the pairwise similarity of a 33-
member library of sialic acid terminated glycans, called
sialosides, to calculate a similarity dendrogram (Figure 3a).
We chose this particularly challenging example because these
glycans all terminate with sialic acids. Thereby, the structural
requirements for terminal sialylation render these glycans very
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Figure 2. Analysis of the bit string representation of 8413 glycan
structures from the KEGG database. (a) The average number of
unique fragments increases with increasing size of a glycan. The
distribution of unique fragments of tetra-, hexa-, and octasaccharides is
shown in histograms. (b) Increasing size of a glycan results in an
increasing number of 1s in the string (bit string density) and thereby
raises the information density. Here, the bit string density is shown for
strings with the length of 1024 bits being either 0-, 1-, or 3-times
folded.

similar. We found very good agreement with our intuitive
clustering. For instance, all N-glycans are clustered in a single
branch of the dendrogram as they are similar due to the core
nonasaccharide. It is also not surprising to see NeuSGc
containing glycans defining their own subtree, because the
algorithm considers NeuSGc as different from NeuSAc as any
other monosaccharide. Even though a single hydroxyl group
discriminates the two monosaccharldes, their recognition in a
biological context is very different.”® As another validation, we
also applied the clustering to the mammalian glycan array from
the Consortium for Functional Glycomics (CFG, version 3.1)
and found that it leads to the identification of distinct activity
islands (Supplementary Figure 3).

A more objective method for the validation of a descriptor
rather than visual inspection is to investigate its neighborhood
behavior.*' This method is based on the similarity pr1nc1ple,
which states, “Similar molecules have similar properties”.
Conversely, dissimilar molecules are expected to have high
biological activity differences. Thus, a plot of dissimilarity versus
biological activity difference should exhibit a characteristic
trapezoidal distribution. Publicly available glycan array data
through the CFG gateway were used, and the neighborhood
behavior was assessed for 30 lectins. A low dissimilarity
correlates well with a low activity difference. Conversely, a large
structural difference may lead to either small or large activity
differences. A statistically significant enhancement of data
points in the lower right triangle was found, identifying glycan
fingerprints as a valid diversity descriptor (Figure 3b and
Supplementary Figure 4).

To show one application of the method, we chose four
recently published glycan arrays to address the following
questions: What are their diversities, and which structures are
missing in the compound selection? We focused on sialic acid
terminated glycans and used all sialosides from the current
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Figure 3. Validation of the similarity measure. (a) A set of 33
sialosides and one non-sialylated N-glycan was clustered on the basis
of a pairwise calculated distance matrix. The clustering agrees well with
intuitive similarity assessment. (b) Data from 30 lectins evaluated
against 377 glycans was retrieved from the CFG database. Each data
point represents a pairwise comparison for dissimilarity (1-SMT) of
two glycans plotted against their normalized activity difference. The
highest fluorescence intensity of each lectin was used for normalization
of the individual data sets. High dissimilarity between a pair of glycans
favors a higher activity difference. Hence, an optimal diversity
descriptor has the highest density of data points in the lower right
triangle (diagonal marked in red; for details see Methods in
Supporting Information).

CFG mammalian glycan array (version 5.0) and three focused
libraries targeting Influenza A viruses from the Wong group>*
and the Feizi group™ and a custom sialoside library of ours®***
covering 155, 30, 70, and 56 sialosides, respectively. Their
diversity index, given by the mean pairwise dissimilarity,® clearly
identifies the CFG array to comprise the most diverse set
(Figure 4a). The calculated values are in the expected range,
taking into account that these sets of glycans are all sialosides,
which by itself imposes restrictions not only to the terminal
residues but also on the core structures. Inspection of the
diversity of our own sialoside library highlights those classes of
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Figure 4. Glycan diversity of four current and two designed microarrays. (a) The diversity index of four current sialoside microarrays was calculated
highlighting the CFG array (version 5.0) being most diverse. Two 25-membered custom arrays are proposed following either a product-based or a
reagent-based design strategy. (b) A root-less dendrogram depicting all sialosides covered by the four libraries with structures from our own library
marked in red. Three structures are shown explicitly as representatives of certain clusters.

glycans that would diversify the selection such as a2,8-linked
sialic acids and branched glycosphingolipid structures (Figure
4b). It is important to recall that except for the CFG array, the
other glycan arrays are designed for the specific purposes of
Influenza A virus studies and thereby restrict the pool to those
of highest biological relevance.

We next wanted to construct a small 25-member array with
equal or greater diversity than the present formats without the
constraint of a specific application such as Influenza A studies.
The construction of a diverse library can follow two principles
with either a product-based selection mechanism or a reagent-
based rational underlying the decision of which compounds to
include in the library.” We chose the structures present on the
current arrays as the pool of all possible sialosides, as these
structures were synthesized in the past in contrast to sialosides
from the KEGG database. Moreover, the database structures
may contain incomplete or false entries that may obscure the
analysis. With this set we succeeded in defining an array of 25
glycans that has a diversity index of 0.664, higher than the
parent libraries of larger size (Figure 4b, “product-based” and
Supplementary Figure Sa). Thus, a more concise sialoside
library with higher diversity in absence of a biological target can
be constructed using a genetic algorithm for selection using the
diversity coefficient as the scoring function. We also found that
diversification did not result in a bias toward the selection of
small glycans, emphasizing the impact of the modified
Tanimoto coefficient (data not shown). However, a more
realistic setting for a carbohydrate chemistry laboratory toward
the construction of a diverse library follows a reagent-based
approach. Therefore, according to the proposal of Werz et al,
we used their 20 building blocks sufficient to chemically
synthesize 50% of the mammalian glycome. With this set of
reagents it was feasible to chemically synthesize 72% of all
sialosides from the pool. This excludes all structures with
internal GalNAc such as LacDiNAc structures, a2,8-linked
sialosides, structures with sulfate groups on the GIcNAc, and S-
galactoses having attached glycans in positions other than in 2,
3, or 6. Under these limitations, an excellent diversity of 0.646
was achieved for a 25-member library (Supplementary Figure
Sb). We believe that a diversity library like this will be helpful in

the design of more focused libraries for biological targets to
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ensure that major structural classes are not inadvertently
omitted.

Here we report a fast and versatile method that can easily
handle very large data sets to calculate the similarity between a
pair of glycans based on “glycan fingerprints”. This method was
developed in analogy to chemoinformatics approaches used to
address the same problem in the field of combinatorial
chemistry, where much time has been devoted solving many
practical and theoretical problems over the last decades. We
therefore based our model on existing and robust measures that
now will enter the field of carbohydrate chemistry allowing
many aspects of carbohydrate chemistry and biology to be
approached in the future such as library design, activity
prediction and database searches.

B METHODS

Encoding of Glycan Structures and Data Handling. Glycan
structures were stored in xml file format with a monosaccharide having
the attributes monosaccharide identifier (e.g,, “Glc”), linkage (e.g,, “4”),
configuration of the anomeric center (e.g, “@”), and any modification
(eg., “60S03”).2°72® The xml data structure was built using the
ElementTree toolkit (version 1.3a).* Glycans from the KEGG
database,'” the CFG depository (array versions 3.1 and 5.0), and
the sialoside arrays from Childs et al,*® Liao et al,”* and Nycholat et
al?**> were converted (for selection of the glycans see Supporting
Information). Filters were applied to remove incomplete data, and the
generated files were analyzed carefully to ensure high quality data sets.
All programming was done in python 2.5.1 using numpy, Scipy, and
matplotlib libraries. All computation was performed on a regular
desktop computer.

Calculating the Glycan Fingerprints. Glycans were fragmented
into mono- to heptasaccharides by systematic identification of the
respective unique subtrees, with a subtree being a fragment of the
glycan comprising all monosaccharides plus their connecting glycosidic
bond information and modifications. The glycan fingerprints were
stored in hashed and folded string: A bit was set to 1 using a
pseudorandom number generator in a bit string for the presence of a
unique fragment. The resulting bit string was then folded by logical
OR operations of the two halves to increase the information content."

Calculation of Glycan Similarity and the Diversity Index. The
pairwise similarity of two glycans A and B encoded in a glycan
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fingerprint of the length n was calculated using the modified Tanimoto
coefficient Syp:'®

— Po — Po

Swrr(A, B) = (2 )sT<A, B) + (1 )sTo<A, B)

with

Sto(A, B) = (%)

and S;(A,B) being the Tanimoto coefficient given by

c

St B) (u +b- c)
and p, being the average bit string occupancy over all structures in the
entire data set, the number of bits set to 1 in glycan A being a and in
glycan B being b, and ¢ being the number of bits set in both
fingerprints, while d represents the number of bits set in neither. The
glycan dissimilarity matrix was calculated as dissimilariy = 1 — Sy
The matrix was then converted using a neighbor-joining a\lgorithm,30
and dendrograms were generated in DrawTree using default
parameters for rooted and rootless trees,® respectively.

The diversity index D(GA) of a glycan array GA was calculated by
the mean pairwise intermolecular dissimilarity:®

D(GA) =1 — AV 2R sur(a, B)
N(GA)

with Syr(AB) being the pairwise similarity of glycans A and B, and
N(GA) being the total number of glycans.

Glycan Array Data. Lectins binding data to the printed glycan
array (version 3.1) were retrieved from the CFG web server for 30
different lectins (see Supporting Information for full list). Inconclusive
and redundant data was not included in the analysis. Moreover, for the
purpose of descriptor evaluation, noisy data or data with very low
number of hits were removed. Only data from active glycans that had
more than one standard deviation of fluorescence above the average
were used.

Product-Oriented and Reagent-Oriented Library Design.
The union of all glycans present on the four sialoside arrays studied in
this communication served as a pool of all potential products. A
genetic algorithm was used to optimize the set of 25 sialosides that
represent the most diverse subset. Briefly, 200 individuals were picked
at random for the starting populations and evolution took place under
a mutation rate of 0.25% and a one-point crossover rate of 1.0 for S00
generations using the Pyevolve package including a penalty for
choosing identical members.*? For the reagent-based design, following
an automated chemical synthesis approach, the 20 building blocks
proposed by Werz and Coworkers were implemented. The
implementation did not take into account if protecting groups were
orthogonal, and it was assumed the glycans were linked to a solid
support at the reducing end. Only sialosides were then considered for
the generation of a custom glycan array that were feasible in the
boundaries of this framework. The same genetic algorithm was used as
described above. All scripts are available upon request from the
authors.
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